Chapter 4

A Quadratically-Convergent Algorithm for the Linear
Programming Problem with Lower and Upper Bounds*

Thomas F. Colemant
Yuying Lit

Abstract. We present a new algorithm to solve linear programming problems with finite lower and upper
bounds. This algorithm generates an infinite sequence of points guaranteed to converge to the solution; the
ultimate convergence rate is quadratic. The algorithm requires the solution of a linear least squares problem
at each iteration - it is similar in this respect to recent interior point and “Karmarkar-like” methods. However,
the algorithm does not require feasibility of the iterates; instead, monotonic decrease of an augmented linear
I, function is maintained. A penalty parameter is not required. This method is particularily attractive for
large-scale problems in that the number of iterations required to obtain high accuracy is relatively insensitive
to problem size and is typically quite small. We provide results of numerical experiments.

1. Introduction. There is an intimate relationship between the linear /; problem and
the linear programming problem . Indeed, linear /, problems can be formulated as linear
programming problems; Bartels, Conn, and Sinclair [1] observe that provided a sufficiently
large penalty parameter is introduced, a linear programming problem is a linear /; problem.
Unfortunately, the threshold value of this parameter is not known a priori.

Here we show that a linear programming problem, with upper and lower bounds on all
variables, is equivalent to an augmented linear /; problem - i.e., an /; function augmented
with a linear term. This augmented form has no penalty parameter. The augmented linear
I, function can be minimized by an algorithm similar to that proposed by Coleman and Li
[3]. This method bears some similarity to interior point methods for linear programming
in that a sequence of weighted linear least squares problems is solved and the number of
iterations is relatively insensitive to the problem size; however, the algorithm differs in

* Presented at the Workshop on Large-Scale Numerical Optimization, Mathematical Sciences Institute,
Cornell University. October 19, 1989.

! Computer Science Department and Center for Applied Mathematics, Cornell University, Ithaca, NY
14853. Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02)
of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86 ER25013.A000,
by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University, and by
the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.

! Computer Science Department, Cornell University, Ithaca,NY 14853. Research partially supported by
the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University and by the
Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.

49

30 COLEMAN AND LI

two important ways. First, the sequence generated is ultimately quadratically convergent;
second, the iterates are not feasible in general.
Consider the following linear programming problem:

min bT,u
(1) subject to Au=c
—espusle

where e is a vector, of appropriate dimension, with each entry equal to unity, and A is an
m-by-n matrix with m < n. Note: Any linear program with finite lower and upper bounds
on all variables, I < u < u, can be expressed in this form after the appropriate scaling and

translation. As we show below, (1) is equivalent to the minimization of an augmented I,
function:

2 i -7 T "bi)
(2) zrgg},,{f:3+§|a.r 1}

where al is row i of AT. This equivalence can be seen by considering the dual of (1).

Alternatively, consider the optimality conditions (e.g., [2]) for problem (2). Specifically, let
A(z) denote the indices of zero residuals at any point z, i.e.,

(3) A(z) = {i|afz - b; =0}

and let A°(z) denote the complementary set (we will suppress the argument when it is clear
from context). Véctor z is optimal to (2) if and only if there exists u € R ! such that

(4) -c + Z sgn(a‘rz —bi)a; = - Z [ia;
t€EAC t€EA

where

(5) —-1<u; <1, Vie A,

and sgn is defined as follows: if w = sgn(v), where v is a vector, then

1 if v; >0,
(6) Wi = { —1 otherwise.

However, optimality conditions for (1) are well-known and can be expressed as follows:

p is optimal if and only if there exists £ € R™ such that

(7) —esu<e
(8) Ap=c
(9) b; — aiTz #0 = u; = sgn(b; — aiTJ:).

But (8) and (9) can be combined to yield a single condition:

(10) - c = Z sgn(b; — aiTz)a,- + Zﬂiai,
1€EAC tEA

where u; = sgn(b; — aTz) if i € A°. Conditions (7), (10) are clearly equivalent to (4), (5):

therefore, the linear programming problem is equivalent to the augmented /; problem.

A QUADRATIC ALGORITHM FOR THE LINEAR PROGRAMMING PROBLEM 51

2. The Algorithm. In this section we briefly describe the augmented !, algorithm.
It is similar in spirit to the algorithm derived in (3]; however, here we do not introduce an
extra variable and the result is a simpler procedure. Moreover, if ¢ = 0 then the proposed
algorithm reduces to the /; algorithm proposed by Coleman and Li (4].

First we make a transformation of variables. Let Z denote a matrix whose rows form a

basis for the null space of A. Assume rank(A) = m. Hence Z has dimensions (n=m)xn,
rank(Z) =n — m, and

AZT = 0.

Then, defining r = b— ATz, problem (2) is equivalent to the following constrained [, problem
with n variables r:

. def
min ¥(r) = g3 7+ |l

(11) subject to Zr = 2Zb,

where go = AT(AAT)"1¢, Optimality conditions for (11) can be expressed as: r is optimal
if there exists A = ZTw, w € R* ™ such that

(12) ri(gi—X)=0, i=1:n
(13) Z(r-5)=0
(14) —IS’\t—gO.Sla 1€.A,

where g = go + sgn(r). If (r,\) satisfy (12)-(14) then it is easy to show that r =
(AAT)"'A(b-r) and p = go — A satisfy (4),(5).
Define § = §(r,\) by !

ri(gi=\))?
(15)] + (i - + eT max{|A - go| - ¢,0}
I5) =

ri(gi—=A))? ’
p+ _I(oi=2)) +eTmax{[A—-go|—e,O}

[l

where 0 < p < 1. Clearly 8% = 9(r* \¥) = 0 if and only if {r*¥,A¥} — (r* A*) provided
Z(r¥ —b) = 0. Notice also that < 6 < 1. Of course there are many possible alternative
definitions of § which could satisfy the properties mentioned above; we have chosen the
above definition because it is simple and appears to perform well in practise.

Define a diagonal scaling matrix as follows:

(16) D?=|D,D;|
where D, = diag(r), Dy = diag(sgn(r) + (1 - 6)(go— A)),and 0 < 8 < 1.

We can now state the algorithm. Let r° be an initial differentiable point satisfying
rR#0,i=1:mZ(1%-b)=0; k — 0; compute an initial point A°.

! Notation: If v is a vector and y = maz(v,0) then y is a vector with components y; = v, if v, > 0:
otherwise, y, = 0. Similarily, if w is a vector and z = |w| then z is a vector with components z, = |wil.

52 COLEMAN AND LI

)]

Algorithm

gtep'é Compute 6* from (15). Define Dy from (16) and g% Viy(rk).
tep

S.olve D,:IATdﬁ k- D,g*

d* — —ATgE, Ne+ gk D;%d*.

Step 3 Do a line search on the Piecewise linear functjon Y(r* + adk) (as described
below) to determine o* ,

rh+l Lk + akd”, k—k+1.

Line Search: We first determine all nonnegative breakpoints. For each i with d; # 0 let
a; = —5* and let J = {i: q; > 0}. Then determine the minimizer in direction d:

a, = argmin ¥(r+ ad) = arg min Y(r + ad).

This is done by considering each breakpoint in J in turn, adjusting the gradient to reflect
a step just beyond the breakpoint and then determining if 4 continues to be a descent
direction for . For example, if a; is the smallest Positive breakpoint, then a step just
beyond this point yields the following gradient:

If (¢%)7d < 0 the next breakpoint is considered, etc. Of course we cannot step all the way
to the minimizer (since points of nondifferentiability must be avoided) and therefore we
compute & = maX;ejufop{ai : 0< a; < a.}, where ag = 0; the steplength « is computed
by

(17) a = &+ max{r,1 — 6} a. - &),

where 0 < 7 < 1.

Remarks: 1. Based on Theorem 1 in [4], it is easy to see that if g* > 0 then Dy is a positive
diagonal matrix; therefore, d* is a descent direction for ¥ at rk,

2. The computation of a ensures of — 1 as k — oo,

3. The dominant work is the least squares solve in Step 2.

4. Search direction d* has the following property: as §* — 0, d* approaches a Newton step
based on the optimality conditions (12,13) (see [4] and (3] for more detail).

3. Convergence Properties. In (4], global and quadratic convergence properties are
established for the linear ly algorithm. It is straightforward to modify each convergence
result in [4] to the algorithm described here for the augmented /;-problem. Indeed, replace
each reference to ||r||, (in [4]) with (), as defined above, and keep in mind that g =
90 + sgn(r*). There is no other change. '

Before stating the result two definitions are needed.

DEFINITION 1. We Say an augmented |, problem is primal nondegenerate if and
only if, at any point z the vectors a;, i € A(z), are linearly independent.

A QUADRATIC ALGORITHM FOR THE LINEAR PROGRAMMING PROBLEM 33

DEFINITION 2. We call A a dual basic point if and only ifAX=cand |{)\ : |)\] =

1}| 2 n— m. We say an augmented l; problem is dual nondegenerate if and only if, at
any dual basic point A, |{X\; : |\;| =1} = n - m.

THEOREM 3.1. Assuming both primal and dual nondegeneracy, the sequence {(r*, Xk)}
is convergent to the optimal pair (r*,*). Moreover, the ultimate rate of convergence is
quadratic.

4. Numerical Results. We have conducted some preliminary numerical experiments
in order to obtain some indication as to whether there is practical potential in our method.
We have generated (mostly) random, relatively small problems and compared our method
to “standard” interior point approaches [5],[9].

The dependent variable ¥ is a measure of the distance from optimality: our stopping
criterion is: ’

9F < 10713,

where machine precision on our system is approximately 10-16.
The starting point (for New) is computed as follows: 2

z° — argmin {-vcTz + |ATz - b]|2}
% — b- ATz
0 T _ 0
- —r
7]l oo

The settings of the parameters are:

T~ 975, p«.99, v /n.

We have implemented the methods in PRO-MATLAB (6] using SUN 3/50 and 3/160
workstations. The linear least squares subproblems are solved with the orthogonal QR-
factorization using row interchanges for greater stability [8]. No account was made of
sparsity in our experiments. :

If we set ¢ = 0 then the algorithm reduces to the original linear /; procedure proposed
in [4]. Numerical experiments are reported in [4]; here we give a small sample. In the
following tables, “Dual” refers to the interior point algorithm proposed by Meketon [5] for
l\-problems. The origin is a natural starting point for this algorithm.

Function Approzimation Problems

‘Determine z = (ay,...,am) so that
m .
#z) = > a; 7Y,
=1

is a best [, fit to f(2) on the points z = 0,1,.,1.

2 For simplicity we did not restrict A° so that A° = ZTw® for some w®. However, the computation of X'
‘does enforce ' = ZTw',i = 1,2,....

54 COLEMAN AND LI

m =35, f(z) = exp(2).

Number of Steps
n | Dual | new

100 [18 8
200 19 11
400 | 21 10
600 | 21 12

m = 6, f(z) = sin(z)

Number of Steps
n | Dual | New
100 | 15 9
200 [16 8
400 | 16 9
600 | 17 9

Next we consider randomly generated linear /; problems, i.e., ¢ = 0.

n =50
Number of Steps
m | Dual | New
10| 25 9
20| 25 12
30| 25 10
40 | 23 9

n = 100
Number of Steps
m | Dual | New
10| 25 10
20| 26 13
40| 26 13
50| 26 11
70| 25 11
90 | 23 10

On these problems the new algorithm outperforms the interior point method “Dual”
by a factor of between two and three; both algorithms perform consistently and are fairly
insensitive to problem size.

We have also generated more general linear programming problems, i.e., ¢ # 0, subject
to general upper and lower bounds: We used the MATLAB function rand to create matrix
A and vectors b,c,ub. Then, Az = b was solved by computing the least-squares solution
(“backslash”); columns of A and components of z were adjusted in sign to ensure z > 0.
Finally, for each i,

ub; - ma.x{2a:,~,ub.-}.

A QUADRATIC ALGORITHM FOR THE LINEAR PROGRAMMING PROBLEM 55

Our algorithm was applied after first transforming (translating and scaling) to achieve unit
upper and lower bounds. We included the MINOS (7] package in our experiments - the
number of iterations required by MINOS is also included in our table of results (we use the
default parameter settings). Column “IP” refers to the number of iterations required by
our MATLAB implementation of the interior point variant proposed in [9].

Random LP Problems:

n = 50
Number of Steps
m | Minos | IP | New
10 58 32| 11
20 85 27| 11
30| 109 |29 11
40 99 26| 9
n = 100

Number of Steps
m | Minos | IP | New
10 56 |38 11
30 168 | 31| 18
40| 228 |30 15
60| 272 | 29| 12
70| 223 | 29| 16
90 194 | 31 13

36 COLEMAN AND LI

n = 200

Number of Steps

m | Minos | IP | New
10 194 63| 19
20-| 249 |35 17
30 325 | 32| 20
50 490 | 30| 15
70 568 | 31| 18
100 651 [30| 15
140 | 600 |30 | 14
160 714 32| 14
190 | 421 27| 14

Observations: Comparing “IP” to “New” we see that the new algorithm typically re-
quires about half the number of iterations required by “IP”. Since the dominant cost of
each iteration is the same - equivalently structured least squares solutions - we conclude
that the proposed algorithm is about twice as fast on this set of problems.

MINOS requires many more iterations than either of the other two methods; the number
of iterations required by MINOS is more sensitive to the problem dimensions.

Note: Here we are not comparing the computational cost of MINOS to the other meth-
ods - we include the MINOS numbers to gain some indication of the dependancy of the
simplex method on problem size. A meaningful comparison of computational costs would
involve careful implementations and experiments on large-scale problems taking into ac-
count sparsity - we are not at that stage yet. However, the comparison of “IP”-iterations
versus “New”-iterations does have some meaning since each iteration has roughly equivalent
complexity.

5. Concluding Remarks. We have proposed a new algorithm for solving linear pro-
gramming problems with lower and upper bounds on the variables. Theoretically, the
algorithm possesses two attractive properties: global convergence and local quadratic con-
vergence. Computationally, this method is similar to the interior point approach - a least
squares problem with identical structure is solved at each iteration. However, our method
does not require feasibility of the iterates. Our preliminary experiments indicate a signifi-
cant improvement, in overall computational cost, compared to the interior point approach.
Experiments on near-degenerate /; problems, reported in [4], indicate a degradation in per-
formance on this class of problems. We expect similar behaviour here; this is a subject of
continuing research.

A more convincing indicator of the practical potential of our proposed method will be
provided be the outcome of numerical experiments with the standard collection of linear
programming test problems. We have not done this yet for two reasons. First, a sparse
implementation of our method is required: to date we have only a dense MATLAB im-
plementation. Second, our proposed method requires explicit lower and upper bounds but
almost all the standard test problems do not have this form. We are currently working on
both these points and hope to report on our numerical experience soon.

Least-squares based methods, such as the proposed algorithm and interior point meth-
ods, have some attractive features for large-scale problems. In particular, they benefit from

A QUADRATIC ALGORITHM FOR THE LINEAR PROGRAMMING PROBLEM

35

any advance in the ability to solve least-squares problems. Since the (sparse) least-squares
problem is a fundamental computation arising in many contexts, there is considerable on-

going work on the development of efficient methods to perform least squares calculations.
especially with reference to parallelism.

6. Acknowledgement. We thank our colleague Michael Todd for suggesting a num-
ber of changes that have improved the presentation.

REFERENCES

(1] R. H. BARTELS, A. R. CoNN, AND J. W. SINCLAIR, Minimization techniques for piecewise differentiable
functions: the l; solution to an overdetermined linear system, Siam J. Numer. Anal., 15 (1978)
pp. 224-240.

(2] T. F. CoLEMAN AND A. R. CoNN, Second-order conditions for an ezact penalty function, Mathematical
Programming, 19 (1980), pp. 178-185.

(3] T. F. CoLEMAN AND Y. L1, A global and quadratic affine scaling method for (augmented) linear 1,
problems, in Proceedings of the 1989 Dundee Conference on Numerical Analysis, 1989.

(4] , A global and quadratic affine scaling method for linear I, problems, Tech. Rep. 89-1026, Computer
Science Department, Cornell University, 1989.

(5] M. MEKETON, Least absolute value regression, tech. rep., AT&T Bell Laboratories, Holmdel, 1988.

(6] C. B. MoLER, J. LITTLE, S. BANGERT, AND S. KLEIMAN, ProMatlab User’s guide, MathWorks, Sher-
born, MA, 1987.

[7] B. MURTAGH AND M. SAUNDERS, MINOS 5.1 user’s guide, Tech. Rep. SOL-83-20R, Stanford University,
1987. :

(8] C. VAN LoAN, On the method of weighting for equality-constrained least squares problems, SIAM Journal
on Numerical Analysis, 22 (1985), pp. 851-864.

(9] R. J. VANDERBEI, M. S. MEKETON, AND B. A. FREEDMAN, A modification of Karmarkar’s linear
programming algorithm, Algorithmica, 1 (1986), pp. 395-407.

1

